Finite Element Analysis and In-Situ Measurement of Out-of-Plane Distortion in Thin Plate TIG Welding

薄板TIG焊接面外变形有限元分析及现场测量

阅读:6
作者:Hui Huang, Xianqing Yin, Zhili Feng, Ninshu Ma

Abstract

Transient distortion of thin plate in the welding process usually has a complicated mode and large magnitude. Quantitative measurement and prediction of full-field distortion are challenging and rarely reported up to now. In this study, the out-of-plane distortion of a thin plate during the Tungsten Inert Gas (TIG) welding process was measured using the digital image correlation (DIC) method. A simulation model based on thermal elastic⁻plastic finite element method (FEM) and DIC measured geometric imperfection were developed for accurate prediction of the transient welding distortion. The numerical results and experimental data agreed very well in both out-of-plane deformation modes and magnitudes of the plate at different stages of welding. The maximum out-of-plane distortion was larger than 4 mm during welding which can cause instability of arc length and heat input. The distance change between welding torch and plate surface was investigated under different initial deflections of the plate before welding. The plate with flat geometry shows the minimum transient and final gap change. In addition, the relationship between heat input and welding distortion was clarified through a series of numerical analyses. Optimization of welding heat input can be performed based on numerical results to avoid excessive welding distortion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。