S1PR1 attenuates pulmonary fibrosis by inhibiting EndMT and improving endothelial barrier function

S1PR1 通过抑制 EndMT 和改善内皮屏障功能来减轻肺纤维化

阅读:8
作者:Wenfang Xiong, Shuhua Chen, Hong Xiang, Shaoli Zhao, Jie Xiao, Jialing Li, Yulan Liu, Zhihao Shu, Jie Ouyang, Jing Zhang, Huiqin Liu, Xuewen Wang, Hang Zou, Ying Chen, Alex Chen, Hongwei Lu

Background

Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease of unknown etiology. Its pathological manifestations include excessive proliferation and activation of fibroblasts and deposition of extracellular matrix. Endothelial cell-mesenchymal transformation (EndMT), a novel mechanism that generates fibroblast during IPF, is responsible for fibroblast-like phenotypic changes and activation of fibroblasts into hypersecretory cells. However, the exact mechanism behind EndMT-derived fibroblasts and activation is uncertain. Here, we investigated the role of sphingosine 1-phosphate receptor 1 (S1PR1) in EndMT-driven pulmonary fibrosis.

Conclusions

Endothelial S1PR1 provides protection against pulmonary fibrosis by inhibiting EndMT and attenuating endothelial barrier damage. Accordingly, S1PR1 may be a potential therapeutic target in progressive IPF.

Methods

We treated C57BL/6 mice with bleomycin (BLM) in vivo and pulmonary microvascular endothelial cells with TGF-β1 in vitro. Western blot, flow cytometry, and immunofluorescence were used to detect the expression of S1PR1 in endothelial cells. To evaluate the effect of S1PR1 on EndMT and endothelial barrier and its role in lung fibrosis and related signaling pathways, S1PR1 agonist and antagonist were used in vitro and in vivo.

Results

Endothelial S1PR1 protein expression was downregulated in both in vitro and in vivo models of pulmonary fibrosis induced by TGF-β1 and BLM, respectively. Downregulation of S1PR1 resulted in EndMT, indicated by decreased expression of endothelial markers CD31 and VE-cadherin, increased expression of mesenchymal markers α-SMA and nuclear transcription factor Snail, and disruption of the endothelial barrier. Further mechanistic studies found that stimulation of S1PR1 inhibited TGF-β1-mediated activation of the Smad2/3 and RhoA/ROCK1 pathways. Moreover, stimulation of S1PR1 attenuated Smad2/3 and RhoA/ROCK1 pathway-mediated damage to endothelial barrier function. Conclusions: Endothelial S1PR1 provides protection against pulmonary fibrosis by inhibiting EndMT and attenuating endothelial barrier damage. Accordingly, S1PR1 may be a potential therapeutic target in progressive IPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。