Human embryonic stem cells with maintenance under a feeder-free and recombinant cytokine-free condition

无饲养层、无重组细胞因子条件下的人类胚胎干细胞维持

阅读:5
作者:Masako Nakahara, Kumiko Saeki, Naoko Nakamura, Satoko Matsuyama, Yoshiko Yogiashi, Kazuki Yasuda, Yasushi Kondo, Akira Yuo

Abstract

We previously reported that cynomolgus monkey embryonic stem (ES) cells could be maintained under a feeder-free condition without using recombinant cytokines if sizes and numbers of ES colonies were kept within an appropriate range. Here we show that this finding is also true with human ES cells (hESCs). The two lines of hESCs, khES-1 and khES-3, were appropriately maintained in the absence of feeder layers or exogenous cytokines such as fibroblast growth factors, Noggin, transforming growth factor beta, and Activin by closely controlling the size and number of hESC colonies. High-level expressions of immature markers including SSEA-4, Oct-4, and Nanog were detected in feeder-free and cytokine-free hESCs, and they formed teratomas when implanted into severe combined immunedeficiency (SCID) mice. No chromosomal abnormalities were observed over 20 passages, ruling out the possibility that special clones with growth advantages had been selected. Global protein expression profiles were quite similar among the hESCs maintained by our feeder- and cytokine-free method, by coculture with mouse embryonic fibroblasts (MEFs) and by a feeder-free method using conditioned media of MEFs. However, the activation level of Akt, an important player for the maintenance of ES cells, was highest and the activation level of extracellular signal-regulated kinase, a critical player for differentiation of ES cells, was lowest in the hESCs maintained by our cytokine-free method. Our results not only show a technical improvement for the maintenance of hESCs but also open a new avenue for the understanding of autocrine signaling networks of hESCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。