LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia

LPS 拮抗 TGF-β 信号可延长大鼠原代小胶质细胞的存活时间和活化作用

阅读:7
作者:Kendall Mitchell, Jill P Shah, Lyubov V Tsytsikova, Ashley M Campbell, Kwame Affram, Aviva J Symes

Abstract

Accumulating evidence indicates that activated microglia contribute to the neuropathology involved in many neurodegenerative diseases and after traumatic injury to the CNS. The cytokine transforming growth factor-beta 1 (TGF-β1), a potent deactivator of microglia, should have the potential to reduce microglial-mediated neurodegeneration. It is therefore perplexing that high levels of TGF-β1 are found in conditions where microglia are chronically activated. We hypothesized that TGF-β1 signaling is suppressed in activated microglia. We therefore activated primary rat microglia with lipopolysaccharide (LPS) and determined the expression of proteins important to TGF-β1 signaling. We found that LPS treatment decreased the expression of the TGF-β receptors, TβR1 and TβR2, and reduced protein levels of Smad2, a key mediator of TGF-β signaling. LPS treatment also antagonized the ability of TGF-β to suppress expression of pro-inflammatory cytokines and to induce microglial cell death. LPS treatment similarly inhibited the ability of the TGF-β related cytokine, Activin-A, to down-regulate expression of pro-inflammatory cytokines and to induce microglial cell death. Together, these data suggest that microglial activators may oppose the actions of TGF-β1, ensuring continued microglial activation and survival that eventually may contribute to the neurodegeneration prevalent in chronic neuroinflammatory conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。