Genetically Corrected iPSC-Derived Neural Stem Cell Grafts Deliver Enzyme Replacement to Affect CNS Disease in Sanfilippo B Mice

基因校正的 iPSC 衍生神经干细胞移植提供酶替代品来影响 Sanfilippo B 小鼠的中枢神经系统疾病

阅读:5
作者:Don Clarke, Yewande Pearse, Shih-Hsin Kan, Steven Q Le, Valentina Sanghez, Jonathan D Cooper, Patricia I Dickson, Michelina Iacovino

Abstract

Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB [MPS IIIB]) is a lysosomal storage disorder primarily affecting the brain that is caused by a deficiency in the enzyme α-N-acetylglucosaminidase (NAGLU), leading to intralysosomal accumulation of heparan sulfate. There are currently no treatments for this disorder. Here we report that, ex vivo, lentiviral correction of Naglu-/- neural stem cells derived from Naglu-/- mice (iNSCs) corrected their lysosomal pathology and allowed them to secrete a functional NAGLU enzyme that could be taken up by deficient cells. Following long-term transplantation of these corrected iNSCs into Naglu-/- mice, we detected NAGLU activity in the majority of engrafted animals. Successfully transplanted Naglu-/- mice showed a significant decrease in storage material, a reduction in astrocyte activation, and complete prevention of microglial activation within the area of engrafted cells and neighboring regions, with beneficial effects extending partway along the rostrocaudal axis of the brain. Our results demonstrate long-term engraftment of iNSCs in the brain that are capable of cross-correcting pathology in Naglu-/- mice. Our findings suggest that genetically engineered iNSCs could potentially be used to deliver enzymes and treat MPS IIIB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。