Whole gene expression profile in blood reveals multiple pathways deregulation in R6/2 mouse model

血液中的全基因表达谱揭示了 R6/2 小鼠模型中的多条通路失调

阅读:7
作者:Daniela Diamanti, Elisa Mori, Danny Incarnato, Federico Malusa, Costanza Fondelli, Letizia Magnoni, Giuseppe Pollio

Background

Huntington Disease (HD) is a progressive neurological disorder, with pathological manifestations in brain areas and in periphery caused by the ubiquitous expression of mutant Huntingtin protein. Transcriptional dysregulation is considered a key molecular mechanism responsible of HD pathogenesis but, although numerous studies investigated mRNA alterations in HD, so far none evaluated a whole gene expression profile in blood of R6/2 mouse model. Findings: To discover novel pathogenic mechanisms and potential peripheral biomarkers useful to monitor disease progression or drug efficacy, a microarray study was performed in blood of R6/2 at manifest stage and wild type littermate mice. This approach allowed to propose new peripheral molecular processes involved in HD and to suggest different panels of candidate biomarkers. Among the discovered deregulated processes, we focused on specific ones: complement and coagulation cascades, PPAR signaling, cardiac muscle contraction, and dilated cardiomyopathy pathways. Selected genes derived from these pathways were additionally investigated in other accessible tissues to validate these matrices as source of biomarkers, and in brain, to link central and peripheral disease manifestations. Conclusions: Our findings validated the skeletal muscle as suitable source to investigate peripheral transcriptional alterations in HD and supported the hypothesis that immunological alteration may contribute to neurological degeneration. Moreover, the identification of altered signaling in mouse blood enforce R6/2 transgenic mouse as a powerful HD model while suggesting novel disease biomarkers for pre-clinical investigation.

Conclusions

Our findings validated the skeletal muscle as suitable source to investigate peripheral transcriptional alterations in HD and supported the hypothesis that immunological alteration may contribute to neurological degeneration. Moreover, the identification of altered signaling in mouse blood enforce R6/2 transgenic mouse as a powerful HD model while suggesting novel disease biomarkers for pre-clinical investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。