Utilizing Calcium Alginate for the Assessment of Bone Morphogenetic Protein 15 Induction Effect on the Differentiation of Mesenchymal Stem Cell Derived from Human Follicular Fluid to Oocyte-Like Structure

利用海藻酸钙评估骨形态发生蛋白 15 诱导对人卵泡液间充质干细胞向卵母细胞样结构分化的影响

阅读:6
作者:Ali Reza Moghadam, Mahin Taheri Moghadam, Ghasem Saki, Roshan Nikbakht

Background

Follicular fluid (FF)-derived mesenchymal stem cells (MSCs) are possible new source of cells in the study of oogenesis and regenerative medicine. Several biomaterials have been used as scaffolds to mimic ovarian tissue stroma. Using good matrix is essential for increasing the cell survival rate, proliferation, and differentiation. However, no study has been performed to investigate the effects of BMP15 and calcium alginate hydrogel on the differentiation potential of FF-derived MSCs to oocyte-like structures (OLSs). Materials and

Conclusion

The three-dimensional alginate culture system seems to be a promising method of getting in vitro differentiation and development of ovarian cells, which could mimic the native ovarian condition.

Methods

In this work, FF MSCs, which were collected from women in routine in vitro fertilization procedure, were capsulated with 0.5% calcium alginate, and then the encapsulated cells were cultured in medium containing BMP15 for 2 weeks. Trypan blue staining was carried out to determine cell viability. Real-time polymerase chain reaction (PCR) and immunofluorescence (ICC) staining method were performed to characterize the expression of OCT4, Nanog, ZP2, and ZP3 genes and protein. The encapsulation process did not change the morphology and viability of the encapsulated cells.

Results

Reverse-transcription-PCR and ICC showed that MSCs expressed germ line stem cell markers such as OCT4 and Nanog. After 4 days of culture, OLSs formed and expressed zona pellucida markers. OLSs at least reached 180-230 μm in diameter in the control and BMP15-treated groups. Finally, a reduction in the expression pattern of pluripotency and ZP markers was detected in the encapsulated cells cultured in the BMP15-supplemented medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。