The Redox Modulating Sonlicromanol Active Metabolite KH176m and the Antioxidant MPG Protect Against Short-Duration Cardiac Ischemia-Reperfusion Injury

氧化还原调节 Sonlicromanol 活性代谢物 KH176m 和抗氧化剂 MPG 可防止短时间心脏缺血再灌注损伤

阅读:4
作者:Yang Xiao #, Karen Yim #, Hong Zhang, Diane Bakker, Rianne Nederlof, Jan A M Smeitink, Herma Renkema, Markus W Hollmann, Nina C Weber, Coert J Zuurbier

Conclusion

Protection against cardiac IRI by the antioxidant KH176m is critically dependent on duration of ischemia. The data suggest that with longer ischemia, the capacity of KH176m to reduce cardiac oxidative stress is rate-limiting, irreversible ischemic oxidative damage maximally accumulates, and antioxidant protection is strongly diminished.

Methods

Isolated C56Bl/6N mouse hearts were Langendorff-perfused and subjected to short (20 min) or long (30 min) ischemia, followed by reperfusion. During perfusion, hearts were treated with saline, 10 μM KH176m, or 1 mM MPG. Cardiac function, cell death (necrosis), and mitochondrial damage (cytochrome c (CytC) release) were evaluated. In additional series, the effect of KH176m treatment on the irreversible oxidative stress marker 4-hydroxy-2-nonenal (4-HNE), formed during ischemia only, was determined at 30-min reperfusion.

Purpose

Sonlicromanol is a phase IIB clinical stage compound developed for treatment of mitochondrial diseases. Its active component, KH176m, functions as an antioxidant, directly scavenging reactive oxygen species (ROS), and redox activator, boosting the peroxiredoxin-thioredoxin system. Here, we examined KH176m's potential to protect against acute cardiac ischemia-reperfusion injury (IRI), compare it with the classic antioxidant N-(2-mercaptopropionyl)-glycine (MPG), and determine whether protection depends on duration (severity) of ischemia.

Results

During baseline conditions, both drugs reduced cardiac performance, with opposing effects on vascular resistance (increased with KH176m, decreased with MPG). For short ischemia, KH176m robustly reduced all cell death parameters: LDH release (0.2 ± 0.2 vs 0.8 ± 0.5 U/min/GWW), infarct size (15 ± 8 vs 31 ± 20%), and CytC release (168.0 ± 151.9 vs 790.8 ± 453.6 ng/min/GWW). Protection by KH176m was associated with decreased cardiac 4-HNE. MPG only reduced CytC release. Following long ischemia, IRI was doubled, and KH176m and MPG now only reduced LDH release. The reduced protection against long ischemia was associated with the inability to reduce cardiac 4-HNE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。