MLL3 Inhibits Apoptosis of Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Promotes Secretion of Inflammatory Factors by Activating CCL2 and the NF-κB Pathway

MLL3通过激活CCL2和NF-κB通路抑制类风湿关节炎成纤维样滑膜细胞凋亡并促进炎症因子分泌

阅读:4
作者:Wenqiang Fan, Zhendan Xu, Shu Liang, Shufei Zuo, Caiyue Bian, Xiao Gao, Yilu Qin, Jie Wu

Abstract

Rheumatoid arthritis (RA) remains the most common inflammatory arthritis and a major cause of disability. This study investigated the mechanism of MLL3 in fibroblast-like synoviocyte (FLS) apoptosis and inflammatory factor secretion in RA. Expression of MLL3 in synovial tissue of RA patients and patients with bone trauma was detected. FLS was isolated and identified by flow cytometry. Expressions of TNF-α, IL-1β, IL-8, and IL-10 and apoptosis were measured by MTT, flow cytometry, and ELISA. Western blot and qRT-PCR were performed to detect MLL3 and CCL2 expressions, H3K4me3 level, and NF-κB pathway-related proteins in rat joints. MLL3 was highly expressed in the synovial tissue of RA patients, and silencing MLL3 in FLS-RA promoted apoptosis, inhibited pro-inflammatory factors TNF-α, IL-1β, and IL-8 secretion, and promoted anti-inflammatory factor IL-10 secretion. Inhibition of MLL3 suppressed intracellular H3K4me3 and CCL2 expressions. CCL2 activated the NF-κB pathway to promote pro-inflammatory factors TNF-α, IL-1β, and IL-8, inhibit anti-inflammatory factor IL-10, and inhibit apoptosis in FLS-RA. Inhibition of MLL3 expression in RA rats reduced joint redness, swelling, and intra-articular inflammation, but increasing H3K4me3 level reversed the ameliorative effects of sh-MLL3 on RA rats. Collectively, MLL3 activated the NF-κB pathway by increasing H3K4me3 modification in the CCL2 promoter region in FLS-RA, thereby inhibiting apoptosis and promoting pro-inflammatory factors of FLS-RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。