Translation stalling induced mitochondrial entrapment of ribosomal quality control related proteins offers cancer cell vulnerability

翻译停滞导致核糖体质量控制相关蛋白被线粒体捕获,导致癌细胞易受攻击

阅读:4
作者:Rani Ojha, Ishaq Tantray, Shouryarudra Banerjee, Suman Rimal, Sandiya Thirunavukkarasu, Saripella Srikrishna, Wah Chiu, Uttam Mete, Aditya Sharma, Nandita Kakkar, Bingwei Lu

Abstract

Ribosome-associated quality control (RQC) monitors ribosomes for aberrant translation. While the role of RQC in neurodegenerative disease is beginning to be appreciated, its involvement in cancer is understudied. Here, we show a positive correlation between RQC proteins ABCE1 and ZNF598 and high-grade muscle-invasive bladder cancer. Translational stalling by the inhibitor emetine (EME) leads to increased mitochondrial localization of RQC factors including ABCE1, ZNF598, and NEMF, which are continuously imported into mitochondria facilitated by increased mitochondrial membrane potential caused by EME. This reduces the availability of these factors in the cytosol, compromising the effectiveness of RQC in handling stalled ribosomes in the cytosol and those associated with the mitochondrial outer membrane (MOM). Imported RQC factors form aggregates inside the mitochondria in a process we term stalling-induced mitochondrial stress (SIMS). ABCE1 plays a crucial role in maintaining mitochondrial health during SIMS. Notably, cancer stem cells (CSCs) exhibit increased expression of ABCE1 and consequently are more resistant to EME-induced mitochondrial dysfunction. This points to a potential mechanism of drug resistance by CSCs. Our study highlights the significance of mitochondrial entrapment of RQC factors such as ABCE1 in determining the fate of cancer cells versus CSCs. Targeting ABCE1 or other RQC factors in translational inhibition cancer therapy may help overcome drug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。