Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes

线粒体 Nox4 上调介导 TGF-β 诱导的小鼠足细胞凋亡

阅读:7
作者:Ranjan Das, Shanhua Xu, Xianglan Quan, Tuyet Thi Nguyen, In Deok Kong, Choon Hee Chung, Eun Young Lee, Seung-Kuy Cha, Kyu-Sang Park

Abstract

Injury to podocytes leads to the onset of chronic renal diseases characterized by proteinuria. Elevated transforming growth factor (TGF)-β in kidney tissue is associated with podocyte damage that ultimately results in apoptosis and detachment. We investigated the proapoptotic mechanism of TGF-β in immortalized mouse podocytes. Exogenous TGF-β1-induced podocyte apoptosis through caspase-3 activation, which was related to elevated ROS levels generated by selective upregulation of NADPH oxidase 4 (Nox4). In mouse podocytes, Nox4 was predominantly localized to mitochondria, and Nox4 upregulation by TGF-β1 markedly depolarized mitochondrial membrane potential. TGF-β1-induced ROS production and caspase activation were mitigated by an antioxidant, the Nox inhibitor diphenyleneiodonium, or small interfering RNA for Nox4. A TGF-β receptor I blocker, SB-431542, completely reversed the changes triggered by TGF-β1. Knockdown of either Smad2 or Smad3 prevented the increase of Nox4 expression, ROS generation, loss of mitochondrial membrane potential, and caspase-3 activation by TGF-β1. These results suggest that TGF-β1-induced mitochondrial Nox4 upregulation via the TGF-β receptor-Smad2/3 pathway is responsible for ROS production, mitochondrial dysfunction, and apoptosis, which may at least in part contribute to the development and progression of proteinuric glomerular diseases such as diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。