Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apoE-/- mice

二甲双胍通过上调 ApoE-/- 小鼠的 KLF2 介导的自噬来减轻动脉粥样硬化和斑块脆弱性

阅读:5
作者:Han Wu, Ke Feng, Chao Zhang, Hao Zhang, Jing Zhang, Yunqing Hua, Zhengwei Dong, Yaxian Zhu, Shu Yang, Chuanrui Ma

Abstract

Atherosclerosis is a chronic lipid disfunction and inflammatory disease, which is characterized with enriched foam cells and necrotic core underneath the vascular endothelium. Therefore, the inhibition of foam cell formation is a critical step for atherosclerosis treatment. Metformin, a first-line treatment for Type 2 diabetes, is reported to be beneficial to cardiovascular disease. However, the mechanism underlying the antiatherogenic effect of metformin remains unclear. Macrophage autophagy is reported to be a highly anti-atherogenic process that promotes the catabolism of cytosolic lipid to maintain cellular lipid homeostasis. Notably, dysfunctional autophagy in macrophages plays a detrimental role during atherogenesis. Krueppel-like factor 2 (KLF2) is an important transcription factor that functions as a key regulator of the autophagy-lysosome pathway. While the role of KLF2 in foam cell formation during the atherogenesis remains elusive. In this study, we first investigated whether metformin could protect against atherogenesis via enhancing autophagy in high fat diet (HFD)-induced apoE-/- mice. Subsequently, we further determined the molecular mechanism that whether metformin could inhibit foam cell formation by activating KLF2-mediated autophagy. We show that metformin protected against HFD-induced atherosclerosis and enhanced plaque stability in apoE-/- mice. Metformin inhibits foam cell formation and cellular apoptosis partially through enhancing autophagy. Mechanistically, metformin promotes autophagy via modulating KLF2 expression. Taken together, our study demonstrates a novel antiatherogenic mechanism of metformin by upregulating KLF2-mediated autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。