ER stress modulates Kv1.5 channels via PERK branch in HL-1 atrial myocytes: Relevance to atrial arrhythmogenesis and the effect of tetramethylpyrazine

内质网应激通过 PERK 分支调节 HL-1 心房肌细胞中的 Kv1.5 通道:与心房心律失常的相关性以及四甲基吡嗪的作用

阅读:6
作者:Xiang-Chong Wang, Yang Zhou, Huan-Xin Chen, Hai-Tao Hou, Guo-Wei He, Qin Yang

Abstract

Endoplasmic reticulum (ER) stress is implicated in cardiac arrhythmia whereas the associated mechanisms remain inadequately understood. Kv1.5 channels are essential for atrial repolarization. Whether ER stress affects Kv1.5 channels is unknown. This study aimed to elucidate the response of Kv1.5 channels to ER stress by clarifying the unfolded protein response (UPR) branch responsible for the channel modulation. In addition, the effect of tetramethylpyrazine (TMP) on Kv1.5 channels was studied. Patch clamp and western-blot results revealed that exposure of HL-1 atrial myocytes to ER stress inducer tunicamycin upregulates Kv1.5 expression, increases Kv1.5 channel current (I Kur ) (14.91 ± 1.11 vs. 6.11 ± 1.31 pA/pF, P < 0.001), and shortened action potential duration (APD) (APD90: 82.79 ± 5.25 vs.121.11 ± 6.72 ms, P < 0.01), which could be reverted by ER stress inhibitors. Blockade of the PERK branch while not IRE1 and ATF6 branches of UPR downregulated Kv1.5 expression, accompanied by a decreased I Kur (9.03 ± 0.99 pA/pF) and a prolonged APD90 (113.69 ± 4.41 ms) (P < 0.01). PERK-mediated increases of Kv1.5 expression and I Kur were also observed in HL-1 cells incubated with thapsigargin. TMP suppressed the enhancement of I Kur (10.52 ± 0.97 vs. 17.52 ± 2.25 pA/pF, P < 0.05), prevented the shortening of APD (APD90: 110.16 ± 5.36 vs. 84.84 ± 4.58 ms, P < 0.05), and inhibited the upregulation of Kv1.5 triggered by ER stress. Our study suggests that ER stress induces upregulation and activation of Kv1.5 channels in atrial myocytes through the PERK branch of UPR. TMP prevents Kv1.5 upregulation/activation and the resultant APD shortening by inhibiting ER stress. These results may shed light on the mechanisms of atrial arrhythmogenesis and the antiarrhythmic effect of the traditional Chinese herb TMP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。