Green Nanotechnology in the Formulation of a Novel Solid Dispersed Multilayered Core-Sheath Raloxifene-Loaded Nanofibrous Buccal Film; In Vitro and In Vivo Characterization

绿色纳米技术在新型固体分散多层芯鞘雷洛昔芬纳米纤维颊膜配方中的应用;体外和体内表征

阅读:6
作者:Sara Nageeb El-Helaly, Eman Abd-Elrasheed, Samar A Salim, Rania H Fahmy, Salwa Salah, Manal M El-Ashmoony

Abstract

Green nanotechnology utilizes the principles of green chemistry to formulate eco-friendly nanocarrier systems to mitigate patients and environment hazards. Raloxifene (RLX) demonstrates poor aqueous solubility (BCS class II) and low bioavailability, only 2% (extensive first-pass metabolism). The aim of this study is to enhance RLX solubility and bioavailability via development of novel solid dispersed multilayered core-sheath RLX-loaded nanofibers (RLX-NFs) without the involvement of organic solvents. A modified emulsion electrospinning technique was developed. Electrospinning of an RLX-nanoemulsion (RLX-NE) with polymer solution (poly vinyl alcohol (PVA), hydroxypropyl methylcellulose (HPMC), and chitosan (CS) in different volume ratios (1:9, 2:8, and 4:6) using D-optimal response surface methodology was adopted. In vitro characterization of RLX-loaded NFs was performed; scanning electron microscope (SEM), thermal analysis, drug content, release studies, and bioadhesion potential. The optimum NFs formula was evaluated for morphology using high-resolution transmission electron microscopy (HRTEM), and ex vivo drug permeation. The superiority of E2 (comprising RLX-NE and PVA (2:8)) over other NF formulae was statistically observed with respect to Q60 (56.048%), Q240 (94.612%), fiber size (594.678 nm), mucoadhesion time 24 h, flux (5.51 µg/cm2/h), and enhancement ratio (2.12). RLX pharmacokinetics parameters were evaluated in rabbits following buccal application of NF formula E2, relative to RLX oral dispersion. E2 showed significantly higher Cmax (53.18 ± 4.56 ng/mL), and relative bioavailability (≈2.29-fold).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。