Conversion of Classical and 11-Oxygenated Androgens by Insulin-Induced AKR1C3 in a Model of Human PCOS Adipocytes

人类 PCOS 脂肪细胞模型中胰岛素诱导的 AKR1C3 对经典雄激素和 11-氧合雄激素的转化

阅读:5
作者:Ryan D Paulukinas, Clementina A Mesaros, Trevor M Penning

Abstract

Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women. A common symptom of PCOS is hyperandrogenism (AE); however, the source of these androgens is uncertain. Aldo-keto reductase family 1 member C3 (AKR1C3) catalyzes the formation of testosterone (T) and 5α-dihydrotestosterone (DHT) in peripheral tissues, which activate the androgen receptor (AR). AKR1C3 is induced by insulin in adipocytes and may be central in driving the AE in PCOS. We elucidated the conversion of both classical and 11-oxygenated androgens to potent androgens in a model of PCOS adipocytes. Using high-performance liquid chromatography (HPLC) discontinuous kinetic assays to measure product formation by recombinant AKR1C3, we found that the conversion of 11-keto-Δ4-androstene-3,17-dione (11K-4AD) to 11-ketotestosterone (11K-T) and 11-keto-5α-androstane-3,17-dione (11K-5AD) to 11-keto-5α-dihydrotestosterone (11K-DHT) were superior to the formation of T and DHT. We utilized a stable isotope dilution liquid chromatography high resolution mass spectrometric (SID-LC-HRMS) assay for the quantification of both classical and 11-oxygenated androgens in differentiated Simpson-Golabi-Behmel syndrome adipocytes in which AKR1C3 was induced by insulin. Adipocytes were treated with adrenal derived 11β-hydroxy-Δ4-androstene-3,17-dione (11β-OH-4AD), 11K-4AD, or Δ4-androstene-3,17-dione (4AD). The conversion of 11β-OH-4AD and 11K-4AD to 11K-T required AKR1C3. We also found that once 11K-T is formed, it is inactivated to 11β-hydroxy-testosterone (11β-OH-T) by 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). Our data reveal a unique role for HSD11B1 in protecting the AR from AE. We conclude that the 11-oxygenated androgens formed in adipocytes may contribute to the hyperandrogenic profile of PCOS women and that AKR1C3 is a potential therapeutic target to mitigate the AE of PCOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。