Suberoylanilide hydroxamic acid alleviates orthotopic liver transplantation‑induced hepatic ischemia‑reperfusion injury by regulating the AKT/GSK3β/NF‑κB and AKT/mTOR pathways in rat Kupffer cells

辛二酰苯胺异羟肟酸通过调节大鼠库普弗细胞中的 AKT/GSK3β/NF-κB 和 AKT/mTOR 通路减轻原位肝移植引起的肝缺血再灌注损伤

阅读:6
作者:Jingyuan Wang, Minghua Deng, Hao Wu, Menghao Wang, Jianping Gong, He Bai, Yakun Wu, Junjiang Pan, Yong Chen, Shengwei Li

Abstract

Multiple mechanisms are involved in regulating hepatic ischemia‑reperfusion injury (IRI), in which Kupffer cells (KCs), which are liver‑resident macrophages, play critical roles by regulating inflammation and the immune response. Suberoylanilide hydroxamic acid (SAHA), a pan‑histone deacetylase inhibitor, has anti‑inflammatory effects and induces autophagy. To investigate whether SAHA ameliorates IRI and the mechanisms by which SAHA exerts its effects, an orthotopic liver transplantation (OLT) rat model was established after treatment with SAHA. The results showed that SAHA effectively ameliorated OLT‑induced IRI by reducing M1 polarization of KCs through inhibition of the AKT/glycogen synthase kinase (GSK)3β/NF‑κB signaling pathway. Furthermore, the present study found that SAHA upregulates autophagy 5 protein (ATG5)/LC3B in KCs through the AKT/mTOR signaling pathway and inhibition of autophagy by knockdown of ATG5 in KCs partly impaired the protective effect of SAHA on IR‑injured liver. Therefore, the current study demonstrated that SAHA reduces M1 polarization of KCs by inhibiting the AKT/GSK3β/NF‑κB pathway and upregulates autophagy in KCs through the AKT/mTOR signaling pathway, which both alleviate OLT‑induced IRI. The present study revealed that SAHA may be a novel treatment for the amelioration of OLT‑induced IRI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。