Performance of Organic Electrochemical Transistors with Ionic Liquid Crystal Elastomers as Solid Electrolytes

以离子液晶弹性体为固体电解质的有机电化学晶体管的性能

阅读:4
作者:Arwa Alyami, Michael Skowrons, Kelum Perera, Björn Lüssem, Antal Jákli

Abstract

Organic electrochemical transistors (OECTs) have emerged as attractive devices for bioelectronics, wearable electronics, soft robotics, and energy storage devices. The electrolyte, being a fundamental component of OECTs, plays a crucial role in their performance. Recently, it has been demonstrated that ionic liquid crystal elastomers (iLCEs) can be used as a solid electrolyte for OECTs. Their capabilities, however, have only been shown for relatively large size substrate-free OECTs. Here, we study the influence of the different alignments of iLCEs on steady state and transient behavior of OECTs using a lateral geometry with source, drain, and gate in the same plane. We achieve excellent electrical response with an ON/OFF switching ratio of >105 and minimal leakage current. The normalized maximum transconductance gm/w of the most sensitive iLCE was found to be 33 S m-1, which is one of the highest among all solid-state-based OECTs reported so far. Additionally, iLCEs show high stability and can be removed and reattached multiple times to the same OECT device without decreasing performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。