Role of the p63-FoxN1 regulatory axis in thymic epithelial cell homeostasis during aging

p63-FoxN1 调节轴在衰老过程中胸腺上皮细胞稳态中的作用

阅读:3
作者:P Burnley, M Rahman, H Wang, Z Zhang, X Sun, Q Zhuge, D-M Su

Abstract

The p63 gene regulates thymic epithelial cell (TEC) proliferation, whereas FoxN1 regulates their differentiation. However, their collaborative role in the regulation of TEC homeostasis during thymic aging is largely unknown. In murine models, the proportion of TAp63(+), but not ΔNp63(+), TECs was increased with age, which was associated with an age-related increase in senescent cell clusters, characterized by SA-β-Gal(+) and p21(+) cells. Intrathymic infusion of exogenous TAp63 cDNA into young wild-type (WT) mice led to an increase in senescent cell clusters. Blockade of TEC differentiation via conditional FoxN1 gene knockout accelerated the appearance of this phenotype to early middle age, whereas intrathymic infusion of exogenous FoxN1 cDNA into aged WT mice brought only a modest reduction in the proportion of TAp63(+) TECs, but an increase in ΔNp63(+) TECs in the partially rejuvenated thymus. Meanwhile, we found that the increased TAp63(+) population contained a high proportion of phosphorylated-p53 TECs, which may be involved in the induction of cellular senescence. Thus, TAp63 levels are positively correlated with TEC senescence but inversely correlated with expression of FoxN1 and FoxN1-regulated TEC differentiation. Thereby, the p63-FoxN1 regulatory axis in regulation of postnatal TEC homeostasis has been revealed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。