Protein kinase D promotes airway epithelial barrier dysfunction and permeability through down-regulation of claudin-1

蛋白激酶D通过下调claudin-1促进气道上皮屏障功能障碍和通透性

阅读:4
作者:Huachen Gan, Guibo Wang, Qin Hao, Q Jane Wang, Hua Tang

Abstract

At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。