Sonodynamic therapy improves anti‑tumor immune effect by increasing the infiltration of CD8+ T cells and altering tumor blood vessels in murine B16F10 melanoma xenograft

声动力疗法通过增加小鼠 B16F10 黑色素瘤异种移植中的 CD8+ T 细胞浸润和改变肿瘤血管来提高抗肿瘤免疫效果

阅读:8
作者:Yan Peng, Limin Jia, Shan Wang, Wenwu Cao, Jinhua Zheng

Abstract

Sonodynamic therapy (SDT) uses a combination of sonosensitizers and low‑intensity therapeutic ultrasound to destroy tumor cells. However, its effects on the tumor microenvironment, particularly on the immune state, remain unknown. The purpose of the present study was to examine the capacity and potency of the antitumor immunity induced by SDT. In the present study, sonosensitizer, 5‑aminolevulinic acid (5‑ALA), and/or ultrasound (US) were used to treat mouse B16F10 melanoma xenograft (1.0 MHz, 0.8 W/cm2, 10% duty cycle) and human umbilical vein endothelial cells (HUVECs; 0.87 MHz, 0.6 W/cm2, 60% duty cycle). Various immune cells, and proteins associated with the immunoregulation such as forkhead Box P3 (Foxp3), cytotoxic T‑lymphocyte associated protein 4 (CTLA‑4), and CD80 were detected by immunofluorescence staining and western blotting. The effect of SDT on blood vessels which were located in the central and peripheral area of tumor tissues was observed by transmission electron microscopy, immunohistochemical and immunofluorescence staining. The effect of SDT on intercellular adhesion molecule‑1 (ICAM‑1) expression on HUVECs was detected by western blotting and reverse transcription‑semi‑quantitative polymerase chain reaction. The results revealed that SDT inhibited tumor growth and improved outcomes. The mean inhibition rate of tumor volume in the US + ALA group was 43.8% and median survival was 45 days in US + ALA group vs. 27.5 days in the control group. SDT increased the number of CD45+ cells, in particular CD8+ and CD68+ cells and upregulated the expression of CD80 in the tumor tissues. The expression levels of Foxp3 and CTLA‑4 were downregulated following SDT. The endothelial cells of tumor central were damaged, but the lumen area of the tumor peripheral vessels (TPVs) and the expression of ICAM‑1 on HUVECs were increased after SDT. The results indicated that SDT improved the outcomes of melanoma‑loading mice, increased the infiltration of CD8+ T cells and downregulates the expression of Foxp3 and CTLA‑4 in mouse melanoma tissues. Furthermore, SDT increased the lumen area of TPVs in murine xenograft and the expression of ICAM‑1 on HUVECs, which may be beneficial to the transendothelial migration of immune cells and the anti‑tumor immune response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。