Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age

DNA 复制和修复基因的表达水平可预测大脑区域体细胞重复不稳定性,但不会因多聚谷氨酰胺疾病蛋白表达或年龄而改变

阅读:6
作者:Amanda G Mason, Stephanie Tomé, Jodie P Simard, Randell T Libby, Theodor K Bammler, Richard P Beyer, A Jennifer Morton, Christopher E Pearson, Albert R La Spada

Abstract

Expansion of CAG/CTG trinucleotide repeats causes numerous inherited neurological disorders, including Huntington's disease (HD), several spinocerebellar ataxias and myotonic dystrophy type 1. Expanded repeats are genetically unstable with a propensity to further expand when transmitted from parents to offspring. For many alleles with expanded repeats, extensive somatic mosaicism has been documented. For CAG repeat diseases, dramatic instability has been documented in the striatum, with larger expansions noted with advancing age. In contrast, only modest instability occurs in the cerebellum. Using microarray expression analysis, we sought to identify the genetic basis of these regional instability differences by comparing gene expression in the striatum and cerebellum of aged wild-type C57BL/6J mice. We identified eight candidate genes enriched in cerebellum, and validated four--Pcna, Rpa1, Msh6 and Fen1--along with a highly associated interactor, Lig1. We also explored whether expression levels of mismatch repair (MMR) proteins are altered in a line of HD transgenic mice, R6/2, that is known to show pronounced regional repeat instability. Compared with wild-type littermates, MMR expression levels were not significantly altered in R6/2 mice regardless of age. Interestingly, expression levels of these candidates were significantly increased in the cerebellum of control and HD human samples in comparison to striatum. Together, our data suggest that elevated expression levels of DNA replication and repair proteins in cerebellum may act as a safeguard against repeat instability, and may account for the dramatically reduced somatic instability present in this brain region, compared with the marked instability observed in the striatum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。