Tissue transglutaminase contributes to the pathogenesis of preeclampsia and stabilizes placental angiotensin receptor type 1 by ubiquitination-preventing isopeptide modification

组织转谷氨酰胺酶促进先兆子痫的发病机制,并通过防止泛素化的异构肽修饰来稳定胎盘血管紧张素受体 1 型

阅读:7
作者:Chen Liu, Wei Wang, Nicholas Parchim, Roxanna A Irani, Sean C Blackwell, Baha Sibai, Jianping Jin, Rodney E Kellems, Yang Xia

Abstract

Preeclampsia is a life-threatening pregnancy disorder that is widely thought to be triggered by impaired placental development. However, the placenta-related pathogenic factors are not fully identified, and their underlying mechanisms in disease development remain unclear. Here, we report that the protein level and enzyme activity of tissue transglutaminase (TG2 or tTG), the most ubiquitous member of a family of enzymes that conducts post-translational modification of proteins by forming ε-(γ-glutamyl)-lysine isopeptide bonds, are significantly elevated in placentas of preeclamptic women. TG2 is localized in the placental syncytiotrophoblasts of patients with preeclampsia where it catalyzes the isopeptide modification of the angiotensin receptor type 1 (AT1). To determine the role of elevated TG2 in preeclampsia, we used a mouse model of preeclampsia based on injection of AT1-agonistic autoantibody. A pathogenic role for TG2 in preeclampsia is suggested by in vivo experiments in which cystamine, a potent transglutaminase inhibitor, or small interfering RNA-mediated TG2 knockdown significantly attenuated autoantibody-induced hypertension and proteinuria in pregnant mice. Cystamine treatment also prevented isopeptide modification of placental AT1 receptors in preeclamptic mice. Mechanistically, we revealed that AT1-agonistic autoantibody stimulation enhances the interaction between AT1 receptor and TG2 and results in increased AT1 receptor stabilization via transglutaminase-mediated isopeptide modification in trophoblasts. Mutagenesis studies further demonstrated that TG2-mediated isopeptide modification of AT1 receptors prevents ubiquitination-dependent receptor degradation. Taken together, our studies not only identify a novel pathogenic involvement of TG2 in preeclampsia but also suggest a previously unrecognized role of TG2 in the regulation of G protein-coupled receptor stabilization by inhibiting ubiquitination-dependent degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。