Lactobacillus reuteri 5454 and Bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses

罗伊氏乳杆菌 5454 和动物双歧杆菌乳亚种 5764 可改善结肠炎,同时对树突状细胞成熟和抗菌反应产生不同的影响

阅读:8
作者:Jiří Hrdý, Jeanne Alard, Aurelie Couturier-Maillard, Olivier Boulard, Denise Boutillier, Myriam Delacre, Carmen Lapadatescu, Annabelle Cesaro, Philippe Blanc, Bruno Pot, Bernhard Ryffel, Mathias Chamaillard, Corinne Grangette

Abstract

Crohn's disease is linked to a decreased diversity in gut microbiota composition as a potential consequence of an impaired anti-microbial response and an altered polarization of T helper cells. Here, we evaluated the immunomodulatory properties of two potential probiotic strains, namely a Bifidobacterium animalis spp. lactis Bl 5764 and a Lactobacillus reuteri Lr 5454 strains. Both strains improved colitis triggered by either 2,4,6-trinitrobenzenesulfonic acid (TNBS) or Citrobacter rodentium infection in mice. Training of dendritic cells (DC) with Lr 5454 efficiently triggered IL-22 secretion and regulatory T cells induction in vitro, while IL-17A production by CD4+ T lymphocytes was stronger when cultured with DCs that were primed with Bl 5764. This strain was sufficient for significantly inducing expression of antimicrobial peptides in vivo through the Crohn's disease predisposing gene encoding for the nucleotide-binding oligomerization domain, containing protein 2 (NOD2). In contrast, NOD2 was dispensable for the impact on antimicrobial peptide expression in mice that were monocolonized with Lr 5454. In conclusion, our work highlights a differential mode of action of two potential probiotic strains that protect mice against colitis, providing the rational for a personalized supportive preventive therapy by probiotics for individuals that are genetically predisposed to Crohn's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。