P2Y receptors mediate Ca2+ signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion

P2Y 受体介导十二指肠细胞中的 Ca2+ 信号传导并促进十二指肠粘膜碳酸氢盐分泌

阅读:5
作者:Xiao Dong, Eric James Smoll, Kwang Hyun Ko, Jonathan Lee, Jimmy Yip Chow, Ho Dong Kim, Paul A Insel, Hui Dong

Abstract

Since little is known about the role of P2Y receptors (purinoceptors) in duodenal mucosal bicarbonate secretion (DMBS), we sought to investigate the expression and function of these receptors in duodenal epithelium. Expression of P2Y(2) receptors was detected by RT-PCR in mouse duodenal epithelium and SCBN cells, a duodenal epithelial cell line. UTP, a P2Y(2)-receptor agonist, but not ADP (10 microM), significantly induced murine duodenal short-circuit current and DMBS in vitro; these responses were abolished by suramin (300 microM), a P2Y-receptor antagonist, or 2-aminoethoxydiphenyl borate (2-APB; 100 microM), a store-operated channel blocker. Mucosal or serosal addition of UTP induced a comparable DMBS in wild-type mice, but markedly impaired response occurred in P2Y(2) knockout mice. Acid-stimulated DMBS in vivo was significantly inhibited by suramin (1 mM) or PPADS (30 microM). Both ATP and UTP, but not ADP (1 microM), raised cytoplasmic-free Ca(2+) concentrations ([Ca(2+)](cyt)) with similar potencies in SCBN cells. ATP-induced [Ca(2+)](cyt) was attenuated by U-73122 (10 microM), La(3+) (30 microM), or 2-APB (10 microM), but was not significantly affected by nifedipine (10 microM). UTP (1 microM) induced a [Ca(2+)](cyt) transient in Ca(2+)-free solutions, and restoration of external Ca(2+) (2 mM) raised [Ca(2+)](cyt) due to capacitative Ca(2+) entry. La(3+) (30 microM), SK&F96365 (30 microM), and 2-APB (10 microM) inhibited UTP-induced Ca(2+) entry by 92, 87, and 94%, respectively. Taken together, our results imply that activation of P2Y(2) receptors enhances DMBS via elevation of [Ca(2+)](cyt) that likely results from an initial increase in intracellular Ca(2+) release followed by extracellular Ca(2+) entry via store-operated channel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。