Universal mtDNA fragment for Cervidae barcoding species identification using phylogeny and preliminary analysis of machine learning approach

利用系统发育和机器学习方法初步分析用于鹿科动物条形码物种识别的通用线粒体DNA片段

阅读:7
作者:Ewa Filip, Tomasz Strzała, Edyta Stępień, Danuta Cembrowska-Lech

Abstract

The aim of the study was to use total DNA obtained from bone material to identify species of free-living animals based on the analysis of mtDNA fragments by molecular methods using accurate bioinformatics tools Bayesian approach and the machine learning approach. In our research, we present a case study of successful species identification based on degraded samples of bone, with the use of short mtDNA fragments. For better barcoding, we used molecular and bioinformatics methods. We obtained a partial sequence of the mitochondrial cytochrome b (Cytb) gene for Capreolus capreolus, Dama dama, and Cervus elaphus, that can be used for species affiliation. The new sequences have been deposited in GenBank, enriching the existing Cervidae mtDNA base. We have also analysed the effect of barcodes on species identification from the perspective of the machine learning approach. Machine learning approaches of BLOG and WEKA were compared with distance-based (TaxonDNA) and tree-based (NJ tree) methods based on the discrimination accuracy of the single barcodes. The results indicated that BLOG and WEKAs SMO classifier and NJ tree performed better than TaxonDNA in discriminating Cervidae species, with BLOG and WEKAs SMO classifier performing the best.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。