Improved Alkaline Hydrogen Evolution Performance of Dealloying Fe75-xCoxSi12.5B12.5 Electrocatalyst

脱合金化 Fe75-xCoxSi12.5B12.5 电催化剂的碱性析氢性能提高

阅读:5
作者:Si-Cheng Zhong, Zhe Cui, Jia Li, Guang-Run Tian, Zhong-Hong Zhou, Hong-Fei Jiao, Jie-Fu Xiong, Li-Chen Wang, Jun Xiang, Fu-Fa Wu, Rong-Da Zhao

Abstract

The electrocatalytic performance of a Fe65Co10Si12.5B12.5 Fe-based compounds toward alkaline hydrogen evolution reaction (HER) is enhanced by dealloying. The dealloying process produced a large number of nanosheets on the surface of NS-Fe65Co10Si12.5B12.5, which greatly increased the specific surface area of the electrode. When the dealloying time is 3 h, the overpotential of NS-Fe65Co10Si12.5B12.5 is only 175.1 mV at 1.0 M KOH and 10 mA cm-2, while under the same conditions, the overpotential of Fe65Co10Si12.5B12.5 is 215 mV, which is reduced. In addition, dealloying treated electrodes also show better HER performance than un-dealloying treated electrodes. With the increase in Co doping amount, the overpotential of the hydrogen evolution reaction decreases, and the hydrogen evolution activity is the best when the addition amount of Co is 10%. This work not only provides a basic understanding of the relationship between surface activity and the dealloying of HER catalysts, but also paves a new way for doping transition metal elements in Fe-based electrocatalysts working in alkaline media.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。