Stroke-induced blood-brain barrier breakdown along the vascular tree - No preferential affection of arteries in different animal models and in humans

中风引起的血管血脑屏障破裂 - 不同动物模型和人类中动脉无优先影响

阅读:5
作者:Martin Krueger, Wolfgang Härtig, Clara Frydrychowicz, Wolf C Mueller, Andreas Reichenbach, Ingo Bechmann, Dominik Michalski

Abstract

Stroke-induced blood-brain barrier breakdown promotes complications like cerebral edema and hemorrhagic transformation, especially in association with therapeutical recanalization of occluded vessels. As arteries, capillaries and veins display distinct functional and morphological characteristics, we here investigated patterns of blood-brain barrier breakdown for each segment of the vascular tree in rodent models of embolic, permanent, and transient middle cerebral artery occlusion, added by analyses of human stroke tissue. Twenty-four hours after ischemia induction, loss of blood-brain barrier function towards FITC-albumin was equally observed for arteries, capillaries, and veins in rodent brains. Noteworthy, veins showed highest ratios of leaky vessels, whereas capillaries exhibited the most and arteries the least widespread perivascular tracer extravasation. In contrast, human autoptic stroke tissue exhibited pronounced extravasations of albumin around arteries and veins, while the pericapillary immunoreactivity appeared only faint. Although electron microscopy revealed comparable alterations of the arterial and capillary endothelium throughout the applied animal models, structural loss of arterial smooth muscle cells was only observed in the translationally relevant model of embolic middle cerebral artery occlusion. In light of the so far available concepts of stroke treatment, the consideration of a differential vascular pathophysiology along the cerebral vasculature is likely to allow development of novel effective treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。