Treatment with Gac Fruit Extract and Probiotics Reduces Serum Trimethylamine N-Oxide in Chronic Kidney Disease Rats

木鳖果提取物和益生菌治疗可降低慢性肾病大鼠血清三甲胺氮氧化物

阅读:5
作者:Panumas Kamkang, Pakkapon Rattanachaisit, Weerapat Anegkamol, Mana Taweevisit, Suwimol Sapwarobol, Somying Tumwasorn, Natthaya Chuaypen, Thasinas Dissayabutra

Abstract

Chronic kidney disease (CKD) affects more than 850 million people worldwide, contributing to morbidity and mortality, particularly through cardiovascular disease (CVD). The altered composition in CKD patients leads to increased production and absorption of uremic toxins such as trimethylamine (TMA) and its oxidized form, trimethylamine N-oxide (TMAO), which are associated with cardiovascular risks. This study investigated the potential of supplementary interventions with high-carotenoid-content gac fruit extract and probiotics to mitigate serum TMAO by modulating the gut microbiota. We conducted an animal study involving 48 male Wistar rats, divided into six groups: the control, CKD control, and four treatment groups receiving gac fruit extract, carotenoid extract, or combinations with Ligilactobacillus salivarius and Lactobacillus crispatus and Lactobacillus casei as a standard probiotic. CKD was induced in rats using cisplatin and they were supplemented with choline to enhance TMA production. The measures included serum creatinine, TMAO levels, gut microbiota composition, and the expression of fecal TMA lyase and intestinal zonula occluden-1 (ZO-1). CKD rats showed increased TMA production and elevated serum levels of TMAO. Treatment with gac fruit extract and selective probiotics significantly altered the composition of the gut microbiota by decreasing Actinobacteriota abundance and increasing the abundance of Bacteroides. This combination effectively promoted ZO-1 expression, reduced fecal TMA lyase, and subsequently lowered serum TMAO levels, demonstrating the therapeutic potential of these interventions. Our results highlight the benefits of gac fruit extract combined with probiotics for the effective reduction in serum TMAO levels in rats with CKD, supporting the further exploration of dietary and microbial interventions to improve outcomes in patients with CKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。