RETRACTED: Tangzhiqing-mediated NRF2 reduces autophagy-dependent ferroptosis to mitigate diabetes-related cognitive impairment neuronal damage

撤稿:糖脂清介导的NRF2降低自噬依赖性铁死亡以减轻糖尿病相关的认知障碍神经元损伤

阅读:17
作者:Lingyan Qiu, Kai Chen, Xu Wang, Yun Zhao

Abstract

The publisher of Rejuvenation Research officially retracts the article entitled, "Tangzhiqing-mediated NRF2 reduces autophagy-dependent ferroptosis to mitigate diabetes-related cognitive impairment neuronal damage," by Lingyan Qiu, Mr. Kai Chen, Prof. Xu Wang, and Ms. Yun Zhao. (Rejuvenation Res 2023; epub 6 Jun; doi: 10.1089/rej.2023.0013). After the acceptance and Instant Online publication of the paper, the authors were contacted repeatedly regarding their page proofs, and for further clarification of unresolved issues within the paper. All attempts to reach the authors were unsuccessful. Concurrently, the publisher identified a problematic overlap with a paper published in 2023 in Endocrine, Metabolic & Immune Disorders - Drug Targets.1 This paper was subsequently withdrawn. These troubling details have led the editorial leadership of Rejuvenation Research to lose confidence in the validity of the submission and to retract the paper. All authors were notified of the decision to retract the paper via email. The lead author, Lingyan Qiu, and the corresponding author, Xu Wang, quickly responded and appealed the decision to retract. The appeal was denied. Reference 1. https://www.eurekaselect.com/article/132631. Withdrawn: Experimental study on NRF2 mediated by Chinese medicine tangzhiqing to reduce autophagy-dependent ferroptosis and alleviate neuron damage in HT22 mice with diabetes-related cognitive disorder. 22 June, 2023; DOI: 10.2174/1871530323666230622151649 Diabetes is a chronic condition defined by the body's inability to process glucose. The most common form, diabetes mellitus, reflects the body's insulin resistance, which leads to long-term raised glucose blood levels. These levels can cause oxidative damage, cell stress, and excessive autophagy throughout the body, including the nervous system. Diabetes-related cognitive impairment (DCI) results from chronic elevation of blood glucose, and as diabetes cases continue to rise, so too do comorbidities such as DCI. Although there are medications to address high blood glucose, there are few that can inhibit excessive autophagy and cell death. Therefore, we investigated if the Traditional Chinese Medicine, Tangzhiqing (TZQ), can reduce the impact of DCI in a high-glucose cell model. We used commercially available kits to evaluate cell viability, mitochondrial activity, and oxidative stress. We found that TZQ treatment increased cell viability, ensured continued mitochondrial activity, and reduced reactive oxygen species. We also found that TZQ functions by increasing NRF2 activity, which decreases the ferroptotic-associated pathways that involve p62, HO-1, and GPX4. Therefore, TZQ should be further investigated for its role in reducing DCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。