Endoglin deficiency impairs VEGFR2 but not FGFR1 or TIE2 activation and alters VEGF-mediated cellular responses in human primary endothelial cells

Endoglin 缺乏会损害 VEGFR2 但不损害 FGFR1 或 TIE2 的活化,并改变人类原代内皮细胞中 VEGF 介导的细胞反应

阅读:6
作者:Qiuwang Zhang, Chenxi Wang, Anthony Cannavicci, Marie E Faughnan, Michael J B Kutryk

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by vascular dysplasia. Mutations of the endoglin (ENG) gene that encodes a co-receptor of the transforming growth factor β1 signaling pathway cause type I HHT. ENG is primarily expressed in endothelial cells (ECs), but its interaction with other key angiogenic pathways to control angiogenesis has not been well addressed. The aim of this study is to investigate ENG interplay with VEGFR2, FGFR1 and TIE2 in primary human ECs. ENG was knocked-down with siRNA in human umbilical vein ECs (HUVECs) and human lung microvascular ECs (HMVEC-L). Gene expression was measured by RT-qPCR and Western blotting. Cell signaling pathway activation was analyzed by detecting phosphor-ERK and phosphor-AKT levels. Cell migration and apoptosis were assessed using the Boyden chamber assay and the CCK-8 Kit, respectively. Loss of ENG in HUVECs led to significantly reduced expression of VEGFR2 but not TIE2 or FGFR1, which was also confirmed in HMVEC-L. HUVECs lacking ENG had significantly lower levels of active Rac1 and a substantial reduction of the transcription factor Sp1, an activator of VEGFR2 transcription, in nuclei. Furthermore, VEGF- but not bFGF- or angiopoietin-1-induced phosphor-ERK and phosphor-AKT were suppressed in ENG deficient HUVECs. Functional analysis revealed that ENG knockdown inhibited cell migratory but enhanced anti-apoptotic activity induced by VEGF. In contrast, bFGF, angiopoietin-1 and -2 induced HUVEC migration and anti-apoptotic activities were not affected by ENG knockdown. In conclusion, ENG deficiency alters the VEGF/VEGFR2 pathway, which may play a role in HHT pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。