A primary microcephaly-associated sas-6 mutation perturbs centrosome duplication, dendrite morphogenesis, and ciliogenesis in Caenorhabditis elegans

与小头畸形相关的原发性 sas-6 突变扰乱了秀丽隐杆线虫的着丝粒复制、树突形态发生和纤毛发生

阅读:8
作者:Mary Bergwell, Amy Smith, Ellie Smith, Carter Dierlam, Ramon Duran, Erin Haastrup, Rebekah Napier-Jameson, Rory Seidel, William Potter, Adam Norris, Jyoti Iyer

Abstract

The human SASS6(I62T) missense mutation has been linked with the incidence of primary microcephaly in a Pakistani family, although the mechanisms by which this mutation causes disease remain unclear. The SASS6(I62T) mutation corresponds to SAS-6(L69T) in Caenorhabditis elegans. Given that SAS-6 is highly conserved, we modeled this mutation in C. elegans and examined the sas-6(L69T) effect on centrosome duplication, ciliogenesis, and dendrite morphogenesis. Our studies revealed that all the above processes are perturbed by the sas-6(L69T) mutation. Specifically, C. elegans carrying the sas-6(L69T) mutation exhibit an increased failure of centrosome duplication in a sensitized genetic background. Further, worms carrying this mutation also display shortened phasmid cilia, an abnormal phasmid cilia morphology, shorter phasmid dendrites, and chemotaxis defects. Our data show that the centrosome duplication defects caused by this mutation are only uncovered in a sensitized genetic background, indicating that these defects are mild. However, the ciliogenesis and dendritic defects caused by this mutation are evident in an otherwise wild-type background, indicating that they are stronger defects. Thus, our studies shed light on the novel mechanisms by which the sas-6(L69T) mutation could contribute to the incidence of primary microcephaly in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。