NEAT1_2/RRAD/EHF Positive Feedback Loop Facilitates Aerobic Glycolysis in Papillary Thyroid Cancer Cells

NEAT1_2/RRAD/EHF 正反馈回路促进甲状腺乳头状癌细胞的有氧糖酵解

阅读:6
作者:Wei Sun, Zhiyuan Wang, Yuan Qin, Xiaoyu Ji, Jiapeng Huang, Fan Zhang, Zhihong Wang, Wenwu Dong, Liang He, Hao Zhang

Abstract

Papillary thyroid carcinoma (PTC) is the most prevalent endocrine-related malignancy. In spite of the good prognosis, a more aggressive disease can develop in some PTC patients, leading to poor survival. Nuclear paraspeckle assembly transcript 1 (NEAT1) enhances tumorigenesis; however, the relationship between NEAT1_2 and glycolysis in PTC has not been identified. The expressions of NEAT1_2, KDM5B, Ras-related associated with diabetes (RRAD), and EHF were determined by quantitative reverse transcription polymerase chain reaction and immunocytochemistry. The effects of NEAT1_2, KDM5B, RRAD, and EHF on PTC glycolysis were ascertained employing in vitro as well as in vivo experiments. Chromatin immunoprecipitation (ChIP), RNA binding protein immunoprecipitation, luciferase reporter assays, and co-immunoprecipitation were utilized to analyze the binding abilities among NEAT1_2, KDM5B, RRAD, and EHF. Overexpression of NEAT1_2 was associated with glycolysis in PTC. NEAT1_2 could activate glycolysis by regulating the expression of RRAD in PTC. NEAT1_2 mediated H3K4me3 modification at the promoter of RRAD by recruiting KDM5B. RRAD further negatively regulated glycolysis by binding and regulating the subcellular location of the transcription factor EHF. EHF could activate the transcription of NEAT1_2, hexokinase 2, and pyruvate kinase M2, thereby forming the NEAT1_2/RRAD/EHF feedback loop. Our study revealed that the NEAT1_2/RRAD/EHF positive feedback loop facilitated glycolysis in PTC, which might avail meaningful insight for PTC management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。