Release of adenosine-induced immunosuppression: Comprehensive characterization of dual A2A/A2B receptor antagonist

腺苷诱导的免疫抑制的释放:双重 A2A/A2B 受体拮抗剂的综合表征

阅读:10
作者:Katarzyna Dziedzic, Paulina Węgrzyn, Michał Gałęzowski, Magdalena Bońkowska, Karolina Grycuk, Grzegorz Satała, Karolina Wiatrowska, Katarzyna Wiklik, Krzysztof Brzózka, Mateusz Nowak

Abstract

Immunosuppression is one of the main mechanisms facilitating tumor expansion. It may be driven by immune checkpoint protein expression, anti-inflammatory cytokine secretion or enhanced metabolic enzyme production, leading to the subsequent build-up of metabolites such as adenosine. Under physiological conditions, adenosine prevents the development of tissue damage resulting from a prolonged immune response; the same mechanism might be employed by tumor tissue to promote immunosuppression. Immune cells expressing A2A and A2B adenosine receptors present in an adenosine-rich environment have suppressed effector functions, such as cytotoxicity, proinflammatory cytokine release, antigen presentation and others, making them inert to cancer cells. This study was designed to investigate the dual antagonist potential of SEL330-639 to abolish adenosine-driven immunosuppression. SEL330-639 has slow dissociation kinetics. It inhibits cAMP production in human CD4+ cells, CD8+ cells and moDCs, which leads to diminished CREB phosphorylation and restoration of antitumor cytokine production (IL-2, TNFα, IL-12) in multiple primary human immune cells. The aforementioned results were additionally validated by gene expression analysis and functional assays in which NK cell line cytotoxicity was recovered by SEL330-639. Adenosine-driven immunosuppression is believed to preclude the effectiveness of immune checkpoint inhibitor therapies. Hence, there is an urgent need to develop new immuno-oncological strategies. Here, we comprehensively characterize SEL330-639, a novel dual A2A/A2B receptor antagonist effective in both lymphoid and myeloid cell populations with nanomolar potency. Due to its tight binding to the A2A and A2B receptors, this binding is sustained even at high adenosine concentrations mimicking the upper limit of the range of adenosine levels observed in the tumor microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。