Morphological and biomechanical effects of annulus fibrosus injury and repair in an ovine cervical model

绵羊宫颈模型中纤维环损伤和修复的形态学和生物力学效应

阅读:10
作者:Rose G Long, Stephen J Ferguson, Lorin M Benneker, Daisuke Sakai, Zhen Li, Abhay Pandit, Dirk W Grijpma, David Eglin, Stephan Zeiter, Tanja Schmid, Ursula Eberli, Dirk Nehrbass, Theodor Di Pauli von Treuheim, Mauro Alini, James C Iatridis, Sibylle Grad

Abstract

Tissue engineering repair of annulus fibrosus (AF) defects has the potential to prevent disability and pain from intervertebral disc (IVD) herniation and its progression to degeneration. Clinical translation of AF repair methods requires assessment in long-term large animal models. An ovine AF injury model was developed using cervical spinal levels and a biopsy-type AF defect to assess composite tissue engineering repair in 1-month and 12-month studies. The repair used a fibrin hydrogel crosslinked with genipin (FibGen) to seal defects, poly(trimethylene carbonate) (PTMC) scaffolds to replace lost AF tissue, and polyurethane membranes to prevent herniation. In the 1-month study, PTMC scaffolds sealed with FibGen herniated with polyurethane membranes. When applied alone, FibGen integrated with the surrounding AF tissue without herniation, showing promise for long-term studies. The 12-month long-term study used only FibGen which showed fibrous healing, biomaterial resorption and no obvious hydrogel-related complications. However, the 2 mm biopsy punch injury condition also exhibited fibrotic healing at 12 months. Both untreated and FibGen treated groups showed equivalency with no detectable differences in histological grades of proteoglycans, cellular morphology, IVD structure and blood vessel formation, biomechanical properties including torque range and axial range of motion, Pfirrmann grade, IVD height, and quantitative scores of vertebral body changes from clinical computed tomography. The biopsy-type injury caused endplate defects with a high prevalence of osteophytes in all groups and no nucleus herniation, indicating that the biopsy-type injury requires further refinement, such as reduction to a slit-type defect that could penetrate the full depth of the AF without damaging the endplate. Results demonstrate translational feasibility of FibGen for AF repair to seal AF defects, although future study with a more refined injury model is required to validate the efficacy of FibGen before translation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。