Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis

缺氧抑制 RANKL 诱导的铁蛋白吞噬并保护破骨细胞免于铁死亡

阅读:8
作者:Shuo Ni, Yin Yuan, Zhi Qian, Zeyuan Zhong, Tao Lv, Yanbin Kuang, Baoqing Yu

Abstract

Ferroptosis is a new form of regulated cell death. Several studies have demonstrated that ferroptosis was involved in multiple diseases. However, the precise role of ferroptosis in osteoporosis remains unclear. Here, we demonstrated that ferroptosis was involved in osteoclasts over the course of RANKL-induced differentiation, and it was induced by iron-starvation response and ferrintinophagy. Mechanistically, under normoxia but not hypoxia, ferroptosis could be induced due to iron-starvation response (increased transferrin receptor 1, decreased ferritin) followed by RANKL stimulation, and this was attributed to the down-regulation of aconitase activity. We further investigated intracellular iron homeostasis and found that ferritinophagy, a process initiated by FTH-NCOA4 complex autophagosome degradation, was activated followed by RANKL stimulation under normoxia. Interestingly, these processes could not be observed under hypoxia. Moreover, we demonstrated that HIF-1α contributed to the decrease of ferritinophagy and autophagy flux under hypoxia. Additionally, HIF-1α impair autophagy flux via inhibition of autophagosome formation under hypoxia in BMDMs. In vivo study, we indicated that HIF-1α specific inhibitor 2ME2 prevent OVX bone loss. In conclusion, our study comprehensively investigated the role of ferroptosis in osteoclasts in vitro and in vivo, and innovatively suggested that targeting HIF-1α and ferritin thus inducing ferroptosis in osteoclasts could be an alternative in treatment of osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。