Preferential rabbit antibody responses to C-termini of NOTCH3 peptide immunogens

兔对 NOTCH3 肽免疫原 C 端的优先抗体反应

阅读:6
作者:Soo Jung Lee, Mitchell B Gasche, Connor J Burrows, Akhil Kondepudi, Xiaojie Zhang, Michael M Wang

Abstract

Antibodies raised in peptide-immunized rabbits have been used in biological research for decades. Although there has been wide implementation of this approach, specific proteins are occasionally difficult to target for multiple reasons. One consideration that was noted in mice is that humoral responses may preferentially target the carboxyl terminus of the peptide sequence which is not present in the intact protein. To shed light on the frequency of preferential rabbit antibody responses to C-termini of peptide immunogens, we present our experience with generation of rabbit antibodies to human NOTCH3. A total of 23 antibodies were raised against 10 peptide sequences of human NOTCH3. Over 70% (16 of 23) of these polyclonal antibodies were determined to be C-terminal preferring: NOTCH3 peptide-reactive antibodies largely targeted the terminating free carboxyl group of the immunizing peptide. The antibodies that preferred C-terminal epitopes reacted weakly or not at all with recombinant target sequences with extension the C-terminus that eliminated the free carboxyl group of the immunogen structure; furthermore, each of these antisera revealed no antibody reactivity to proteins truncated before the C-terminus of the immunogen. In immunocytochemical applications of these anti-peptide antibodies, we similarly found reactivity to recombinant targets that best binding to cells expressing the free C-terminus of the immunizing sequence. In aggregate, our experience demonstrates a strong propensity for rabbits to mount antibody responses to C-terminal epitopes of NOTCH3-derived peptides which is predicted to limit their use against the native protein. We discuss some potential approaches to overcome this bias that could improve the efficiency of generation of antibodies in this commonly utilized experimental paradigm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。