Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine

胆碱酯酶和具有治疗价值的可卡因水解酶对海洛因及其代谢物 6-单乙酰吗啡的催化活性的动力学表征

阅读:5
作者:Kyungbo Kim, Jianzhuang Yao, Zhenyu Jin, Fang Zheng, Chang-Guo Zhan

Abstract

As the most popularly abused one of opioids, heroin is actually a prodrug. In the body, heroin is hydrolyzed/activated to 6-monoacetylmorphine (6-MAM) first and then to morphine to produce its toxic and physiological effects. It has been known that heroin hydrolysis to 6-MAM and morphine is accelerated by cholinesterases, including acetylcholinesterase (AChE) and/or butyrylcholinesterase (BChE). However, there has been controversy over the specific catalytic activities and functional significance of the cholinesterases, which requires for the more careful kinetic characterization under the same experimental conditions. Here we report the kinetic characterization of AChE, BChE, and a therapeutically promising cocaine hydrolase (CocH1) for heroin and 6-MAM hydrolyses under the same experimental conditions. It has been demonstrated that AChE and BChE have similar kcat values (2100 and 1840 min-1, respectively) against heroin, but with a large difference in KM (2170 and 120 μM, respectively). Both AChE and BChE can catalyze 6-MAM hydrolysis to morphine, with relatively lower catalytic efficiency compared to the heroin hydrolysis. CocH1 can also catalyze hydrolysis of heroin (kcat = 2150 min-1 and KM = 245 μM) and 6-MAM (kcat = 0.223 min-1 and KM = 292 μM), with relatively larger KM values and lower catalytic efficiency compared to BChE. Notably, the KM values of CocH1 against both heroin and 6-MAM are all much larger than previously reported maximum serum heroin and 6-MAM concentrations observed in heroin users, implying that the heroin use along with cocaine will not drastically affect the catalytic activity of CocH1 against cocaine in the CocH1-based enzyme therapy for cocaine abuse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。