The Tumor Suppressor FBW7 and the Vitamin D Receptor Are Mutual Cofactors in Protein Turnover and Transcriptional Regulation

肿瘤抑制因子 FBW7 和维生素 D 受体是蛋白质周转和转录调控中的相互辅助因子

阅读:6
作者:Reyhaneh Salehi-Tabar, Babak Memari, Hilary Wong, Vassil Dimitrov, Natacha Rochel, John H White

Abstract

The E3 ligase and tumor suppressor FBW7 targets drivers of cell-cycle progression such as the oncogenic transcription factor c-MYC, for proteasomal degradation. Vitamin D signaling regulates c-MYC expression and turnover in vitro and in vivo, which is highly significant as epidemiologic data link vitamin D deficiency to increased cancer incidence. We hypothesized that FBW7 and the vitamin D receptor (VDR) controlled each other's function as regulators of protein turnover and gene transcription, respectively. We found that hormonal 1,25-dihydroxyvitamin D3 (1,25D) rapidly enhanced the interaction of FBW7 with VDR and with c-MYC, whereas it blocked FBW7 binding to c-MYC antagonist MXD1. 1,25D stimulated the recruitment of FBW7, SCF complex subunits, and ubiquitin to DNA-bound c-MYC, consistent with 1,25D-regulated c-MYC degradation on DNA. 1,25D also accelerated the turnover of other FBW7 target proteins such as Cyclin E, c-JUN, MCL1, and AIB1, and, importantly, FBW7 depletion attenuated the 1,25D-induced cell-cycle arrest. Although the VDR contains a consensus FBW7 recognition motif in a VDR-specific insertion domain, its mutation did not affect FBW7-VDR interactions, and FBW7 ablation did not stabilize the VDR. Remarkably, however, FBW7 is essential for optimal VDR gene expression. In addition, the FBW7 and SCF complex subunits are recruited to 1,25D-induced genes and FBW7 depletion inhibited the 1,25D-dependent transactivation. Collectively, these data show that the VDR and FBW7 are mutual cofactors, and provide a mechanistic basis for the cancer-preventive actions of vitamin D. IMPLICATIONS: The key findings show that the VDR and the E3 ligase FBW7 regulate each other's functions in transcriptional regulation and control of protein turnover, respectively, and provide a molecular basis for cancer-preventive actions of vitamin D.Visual Overview: http://mcr.aacrjournals.org/content/17/3/709/F1.large.jpg.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。