Membrane Proteins Increase with the Repeated Bout Effect

膜蛋白随着重复发作效应而增加

阅读:5
作者:Sylvia R Sidky, Christopher P Ingalls, Dawn A Lowe, Cory W Baumann

Conclusions

The RBE represents a physiological measure of skeletal muscle plasticity. Here, we demonstrate that repeated bouts of ECC contractions increase contents of dystrophin, β-sarcoglycan, and junctophilin and attenuate postinjury torque deficits. Given our results, accumulation of membrane-associated proteins likely contributes to strength adaptations observed after repeated bouts of ECC contractions.

Methods

Anterior crural muscles of C57BL/6 female mice (3-5 months) were subjected to repeated bouts of in vivo ECCs, with isometric torque being measured immediately before and after injury. A total of six bouts were completed with 7 d between each bout. Protein content of dystrophin, β-sarcoglycan, and junctophilin were then assessed via immunoblotting in injured and uninjured muscles.

Purpose

The ability of skeletal muscle to adapt to eccentric (ECC) contraction-induced injury is known as the repeated bout effect (RBE). Despite the RBE being a well-established phenomenon observed in skeletal muscle, cellular and molecular events particularly those at the membranes that contribute to the adaptive potential of muscle have yet to be established. Therefore, the purpose of this study was to examine how membrane-associated proteins respond to the RBE.

Results

When expressed relative to preinjury isometric torque of bout 1, deficits in postinjury isometric torque during bout 2 (38%) did not differ from bout 1 (36%; P = 0.646) and were attenuated during bouts 3 through 6 (range, 24%-15%; P ≤ 0.014). Contents of dystrophin, β-sarcoglycan, and junctophilin did not change immediately after a single bout of 50 maximal ECCs (P ≥ 0.155); however, as a result of repeated bouts, contents of dystrophin, β-sarcoglycan, and junctophilin all increased compared with muscles that completed one or no bouts of ECC contractions (P ≤ 0.003). Conclusions: The RBE represents a physiological measure of skeletal muscle plasticity. Here, we demonstrate that repeated bouts of ECC contractions increase contents of dystrophin, β-sarcoglycan, and junctophilin and attenuate postinjury torque deficits. Given our results, accumulation of membrane-associated proteins likely contributes to strength adaptations observed after repeated bouts of ECC contractions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。