Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters

邻苯二甲酸酯引起的牛睾丸诱导多能干细胞雄激素受体介导的细胞凋亡

阅读:5
作者:S-W Wang, S S-W Wang, D-C Wu, Y-C Lin, C-C Ku, C-C Wu, C-Y Chai, J-N Lee, E-M Tsai, C-Ls Lin, R-C Yang, Y-C Ko, H-S Yu, C Huo, C-P Chuu, Y Murayama, Y Nakamura, S Hashimoto, K Matsushima, C Jin, R Eckner, C-S Lin, S Saito, K K Yokoyama

Abstract

The androgen receptor (AR) has a critical role in promoting androgen-dependent and -independent apoptosis in testicular cells. However, the molecular mechanisms that underlie the ligand-independent apoptosis, including the activity of AR in testicular stem cells, are not completely understood. In the present study, we generated induced pluripotent stem cells (iPSCs) from bovine testicular cells by electroporation of octamer-binding transcription factor 4 (OCT4). The cells were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4, which maintained and stabilized the expression of stemness genes and pluripotency. The iPSCs were used to assess the apoptosis activity following exposure to phthalate esters, including di (2-ethyhexyl) phthalates, di (n-butyl) phthalate, and butyl benzyl phthalate. Phthalate esters significantly reduced the expression of AR in iPSCs and induced a higher ratio of BAX/BCL-2, thereby favoring apoptosis. Phthalate esters also increased the expression of cyclin-dependent kinase inhibitor 1 (p21(Cip1)) in a p53-dependent manner and enhanced the transcriptional activity of p53. The forced expression of AR and knockdown of p21(Cip1) led to the rescue of the phthalate-mediated apoptosis. Overall, this study suggests that testicular iPSCs are a useful system for screening the toxicity of environmental disruptors and examining their effect on the maintenance of stemness and pluripotency, as well as for identifying the iPSC signaling pathway(s) that are deregulated by these chemicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。