Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet

血管 RNA 测序数据的生物信息学分析揭示了由高脂肪/胆固醇饮食诱发的新型西藏小型猪动脉粥样硬化模型中的关键基因和通路

阅读:4
作者:Yongming Pan, Chen Yu, Junjie Huang, Yili Rong, Jiaojiao Chen, Minli Chen

Background

Atherosclerosis is a major contributor to cardiovascular events, however, its molecular mechanism remains poorly known. Animal models of atherosclerosis can be a valuable tool to provide insights into the etiology, pathophysiology, and complications of atherosclerosis. In particular, Tibetan minipigs are a feasible model for studying diet-related metabolic and atherosclerotic diseases.

Conclusions

The identified DEGs and their enriched pathways provide references for the development and progression mechanism of Tibetan minipig atherosclerosis model induced by the HFC diet.

Methods

We used vascular transcriptomics to identify differentially expressed genes (DEGs) in high fat/cholesterol (HFC) diet-fed Tibetan minipig atherosclerosis models, analyzed the DEGs gene ontology (GO) terms, pathways and protein-protein interactions (PPI) networks, and identified hub genes and key modules using molecular complex detection (MCODE), Centiscape and CytoHubba plugin. The identified genes were validated using the human carotid atherosclerosis database (GSEA 43292) and RT-PCR methods.

Results

Our results showed that minipigs displayed obvious dyslipidemia, oxidative stress, inflammatory response, atherosclerotic plaques, as well as increased low-density lipoprotein (LDL) and leukocyte recruitment after 24 weeks of HFC diet feeding compared to those under a regular diet. Our RNA-seq results revealed 1716 DEGs in the atherosclerotic/NC group, of which 1468 genes were up-regulated and 248 genes were down-regulated. Functional enrichment analysis of DEGs showed that the HFC diet-induced changes are related to vascular immune-inflammatory responses, lipid metabolism and muscle contraction, indicating that hypercholesterolemia caused by HFC diet can activate innate and adaptive immune responses to drive atherosclerosis development. Furthermore, we identified four modules from the major PPI network, which are implicated in cell chemotaxis, myeloid leukocyte activation, cytokine production, and lymphocyte activation. Fifteen hub genes were discovered, including TNF, PTPRC, ITGB2, ITGAM, VCAM1, CXCR4, TYROBP, TLR4, LCP2, C5AR1, CD86, MMP9, PTPN6, C3, and CXCL10, as well as two transcription factors (TF), i.e. NF-ĸB1 and SPI1. These results are consistent with the expression patterns in human carotid plaque and were validated by RT-PCR. Conclusions: The identified DEGs and their enriched pathways provide references for the development and progression mechanism of Tibetan minipig atherosclerosis model induced by the HFC diet.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。