The transcription factor E26 transformation-specific sequence-1 mediates neointima formation in arteriovenous fistula

转录因子E26转化特异性序列-1介导动静脉瘘中新内膜的形成

阅读:4
作者:Wenguang Feng, Phillip Chumley, Michael Allon, James George, David W Scott, Rakesh P Patel, Silvio Litovsky, Edgar A Jaimes

Abstract

Hemodialysis vascular access dysfunction contributes to increased morbidity and mortality in hemodialysis patients. Arteriovenous fistula (AVF) is the preferred type of vascular access for hemodialysis but has high rates of dysfunction, in part because of excessive neointima formation. The transcription factor E26 transformation-specific sequence-1 (ETS-1) is a mediator of proinflammatory responses in hypertension and endovascular injury. We examined the role of ETS-1 in the formation of neointima in AVF. Right carotid artery to internal jugular vein fistulas were created in C57BL/6 mice and assigned to treatment with an ETS-1-dominant negative peptide (ETS-DN), an inactive mutant peptide (ETS-MU), or vehicle (n=6 per group). After 7 and 21 days, AVFs or contralateral internal jugular veins were processed for PCR, immunofluorescence, immunohistochemistry, and morphometry. In AVFs, ETS-1 mRNA increased 2.5-fold at 7 days and 4-fold at 21 days. By immunofluorescence, we confirmed increased expression of ETS-1 predominantly in the neointima and overlying endothelium. Similarly, ETS-1 expression increased in human AVFs compared with normal veins. In mice, ETS-DN, but not ETS-MU, reduced neointima formation at days 7 and 21 and reduced the expression of nitric oxide synthase 2, NADPH oxidase (NOX) 2, NOX4, E-selectin, and monocyte chemotactic protein-1. Shear stress increased ETS-1 phosphorylation in human umbilical vein cells in a NOX-dependent manner, demonstrating a role for reactive oxygen species in ETS-1 activation. These results unveil the role of ETS-1 as a mediator of neointima formation in AVF and may result in the development of novel strategies for the treatment of AVF dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。