Adsorption and separation technologies based on supramolecular macrocycles for water treatment

基于超分子大环的水处理吸附分离技术

阅读:6
作者:Qian Lin, Xiaolong Ding, Yuansheng Hou, Wajahat Ali, Zichen Li, Xinya Han, Zhen Meng, Yue Sun, Yi Liu

Abstract

The escalating challenges in water treatment, exacerbated by climate change, have catalyzed the emergence of innovative solutions. Novel adsorption separation and membrane filtration methodologies, achieved through molecular structure manipulation, are gaining traction in the environmental and energy sectors. Separation technologies, integral to both the chemical industry and everyday life, encompass concentration and purification processes. Macrocycles, recognized as porous materials, have been prevalent in water treatment due to their inherent benefits: stability, adaptability, and facile modification. These structures typically exhibit high selectivity and reversibility for specific ions or molecules, enhancing their efficacy in water purification processes. The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations, membrane filtrations, resource utilization, and broader water treatment applications. This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry, with a focus on adsorptive and membrane separations. The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors, including desalination, elemental extraction, seawater energy harnessing, and sustainable extraction. Hopefully, this review can guide the design and functionality of macrocycles, offering a significantly promising pathway for pollutant removal and resource utilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。