Ambroxol, a mucolytic agent, boosts HO-1, suppresses NF-κB, and decreases the susceptibility of the inflamed rat colon to apoptosis: A new treatment option for treating ulcerative colitis

粘液溶解剂氨溴索可增强 HO-1、抑制 NF-κB,并降低发炎大鼠结肠对细胞凋亡的敏感性:一种治疗溃疡性结肠炎的新治疗选择

阅读:6
作者:Simona Cavalu, Hossam Sharaf, Sameh Saber, Mahmoud E Youssef, Amir Mohamed Abdelhamid, Ahmed A E Mourad, Samar Ibrahim, Shady Allam, Rehab Mohamed Elgharabawy, Eman El-Ahwany, Noha A Amin, Ahmed Shata, Mai Eldegla, Marina Atef, Maii Aboraya, Mayar Mohamed, Niera Anz, Dina Abd Elmotelb, Fayrouz Gabr,

Abstract

Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that increases the risk of developing colorectal cancer and imposes a lifelong healthcare burden on millions of patients worldwide. Current treatment strategies are associated with significant risks and have been shown to be fairly effective. Hence, discovering new therapies that have better efficacy and safety profiles than currently exploited therapeutic strategies is challenging. It has been well delineated that NF-κB/Nrf2 crosstalk is a chief player in the interplay between oxidative stress and inflammation. Ambroxol hydrochloride, a mucolytic agent, has shown antioxidant and anti-inflammatory activity in humans and animals and has not yet been examined for the management of UC. Therefore, our approach was to investigate whether ambroxol could be effective to combat UC using the common acetic acid rat model. Interestingly, a high dose of oral ambroxol (200 mg/kg/day) reasonably improved the microscopic and macroscopic features of the injured colon. This was linked to low disease activity and a reduction in the colonic weight/length ratio. In the context of that, ambroxol boosted Nrf2 activity and upregulated HO-1 and catalase to augment the antioxidant defense against oxidative damage. Besides, ambroxol inactivated NF-κB signaling and its consequent target pro-inflammatory mediators, IL-6 and TNF-α. In contrast, IL-10 is upregulated. Consistent with these results, myeloperoxidase activity is suppressed. Moreover, ambroxol decreased the susceptibility of the injured colon to apoptosis. To conclude, our findings highlight the potential application of ambroxol to modify the progression of UC by its anti-inflammatory, antioxidant, and antiapoptotic properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。