The proteomic landscape and temporal dynamics of mammalian gastruloid development

哺乳动物原肠胚发育的蛋白质组学景观和时间动态

阅读:8
作者:Riddhiman K Garge, Valerie Lynch, Rose Fields, Silvia Casadei, Sabrina Best, Jeremy Stone, Matthew Snyder, Chris D McGann, Jay Shendure, Lea M Starita, Nobuhiko Hamazaki, Devin K Schweppe

Abstract

Gastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is challenging to study in vivo, stem cell-derived models have emerged as powerful surrogates, e.g. human and mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have been extensively applied to characterize such in vitro embryo models, a paucity of measurements of protein dynamics and regulation leaves a major gap in our understanding. Here, we sought to address this by applying quantitative proteomics to human and mouse gastruloids at four key stages of their differentiation (naïve ESCs, primed ESCs, early gastruloids, late gastruloids). To the resulting data, we perform network analysis to map the dynamics of expression of macromolecular protein complexes and biochemical pathways, including identifying cooperative proteins that associate with them. With matched RNA-seq and phosphosite data from these same stages, we investigate pathway-, stage- and species-specific aspects of translational and post-translational regulation, e.g. finding peri-gastrulation stages of human and mice to be discordant with respect to the mitochondrial transcriptome vs. proteome, and nominating novel kinase-substrate relationships based on phosphosite dynamics. Finally, we leverage correlated dynamics to identify conserved protein networks centered around congenital disease genes. Altogether, our data (https://gastruloid.brotmanbaty.org/) and analyses showcase the potential of intersecting in vitro embryo models and proteomics to advance our understanding of early mammalian development in ways not possible through transcriptomics alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。