Androgen receptor splicing variant 7 (ARv7) promotes DNA damage response in prostate cancer cells

雄激素受体剪接变体 7 (ARv7) 促进前列腺癌细胞中的 DNA 损伤反应

阅读:8
作者:Haoge Luo, Yanan Liu, Yang Li, Chaoke Zhang, Bingbing Yu, Chen Shao

Abstract

In the treatment of patients with locally advanced prostate cancer (PCa), androgen deprivation therapy (ADT) significantly enhances the efficacy of radiotherapy by weakening the DNA damage response (DDR) pathway. Recently, several studies have suggested that androgen receptor splicing variants (ARvs) may mediate a compensatory DDR pathway when canonical androgen receptor (AR) signaling is inhibited, thus contributing to the resistance of some patients to this combinational treatment. However, the specific roles of certain ARvs as well as the detailed mechanism of how ARvs regulate the DDR are not well understood. Here, we demonstrated that AR splicing variant 7 (ARv7), which is the most abundant form of ARvs, significantly promotes the DDR of PCa cells under severe DNA damage independent of its parental AR by using the ionizing radiation (IR) and doxorubicin (Dox)-treated cell models. Mechanistically, ARv7 is sufficient to upregulate both the homologous recombination (HR) and the nonhomologous end joining (NHEJ) pathways by forming a positive regulatory loop with poly ADP-ribose polymerase 1 (PARP1). Moreover, the presence of ARv7 impairs the synergistic effect between AR antagonists and poly ADP-ribose polymerase (PARP) inhibitor, which has been recently shown to be a promising future treatment strategy for metastatic castration resistant prostate cancer (mCRPC). Combined, our data indicate that constitutively active ARv7 not only contributes to radioresistance after ADT, but may also serve as a potential predictive biomarker for assessing the efficacy of novel PARP inhibitor-based therapy in PCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。