Generation of an oxoglutarate dehydrogenase knockout rat model and the effect of a high-fat diet

氧戊二酸脱氢酶基因敲除大鼠模型的建立及高脂饮食的影响

阅读:7
作者:Zhirui Fan, Lifeng Li, Xiaoli Li, Meng Zhang, Yali Zhong, Yaqing Li, Dandan Yu, Jing Cao, Jing Zhao, Xiaoming Deng, Mingzhi Zhang, Jian-Guo Wen, Zhangsuo Liu, Mariusz Adam Goscinski, Viktor Berge, Jahn M Nesland, Zhenhe Suo

Abstract

Although abnormal metabolism in metabolic syndrome and tumours has been well described, the relationship between oxoglutarate dehydrogenase (OGDH) and obesity-related diseases is still largely unknown. This study aimed to investigate whether it was possible to use transcription activator-like effector nuclease (TALEN) technology to establish OGDH-/- rats and then study the effect of a high-fat diet (HFD) on these rats. However, after OGDH+/-rats were generated, we were unable to identify any OGDH-/- rats by performing mating experiments with the OGDH+/- rats for almost one year. During the past three years, only OGDH+/- rats were stably established, and correspondingly reduced OGDH expression in the tissues of the OGDH+/- rats was verified. No significant abnormal behaviour was observed in the OGDH+/- rats compared to the wild-type (WT) control rats. However, the OGDH+/- rats were revealed to have higher body weight, and the difference was even significantly greater under the HFD condition. Furthermore, blood biochemical and tissue histological examinations uncovered no abnormalities with normal diets, but a HFD resulted in liver dysfunction with pathological alterations in the OGDH+/- rats. Our results strongly indicate that OGDH homologous knockout is lethal in rats but heterologous OGDH knockout results in vulnerable liver lesions with a HFD. Therefore, the current study may provide a useful OGDH+/- rat model for further investigations of metabolic syndrome and obesity-related hepatic carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。