Does the Sum-Frequency Generation Signal of Aromatic C-H Vibrations Reflect Molecular Orientation?

芳香族 CH 振动的和频生成信号是否反映分子取向?

阅读:5
作者:Fumiki Matsumura, Chun-Chieh Yu, Xiaoqing Yu, Kuo-Yang Chiang, Takakazu Seki, Mischa Bonn, Yuki Nagata

Abstract

Organic molecules with aromatic groups at the aqueous interfaces play a central role in atmospheric chemistry, green chemistry, and on-water synthesis. Insights into the organization of interfacial organic molecules can be obtained using surface-specific vibrational sum-frequency generation (SFG) spectroscopy. However, the origin of the aromatic C-H stretching mode peak is unknown, prohibiting us from connecting the SFG signal to the interfacial molecular structure. Here, we explore the origin of the aromatic C-H stretching response by heterodyne-detected SFG (HD-SFG) at the liquid/vapor interface of benzene derivatives and find that, irrespective of the molecular orientation, the sign of the aromatic C-H stretching signals is negative for all the studied solvents. Together with density functional theory (DFT) calculations, we reveal that the interfacial quadrupole contribution dominates, even for the symmetry-broken benzene derivatives, although the dipole contribution is non-negligible. We propose a simple evaluation of the molecular orientation based on the aromatic C-H peak area.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。