Sustained Ultrastructural Changes in Rat Hippocampal Formation After Repeated Electroconvulsive Seizures

反复电休克发作后大鼠海马结构持续超微结构变化

阅读:4
作者:Fenghua Chen, Jibrin Danladi, Gregers Wegener, Torsten M Madsen, Jens R Nyengaard

Background

Electroconvulsive therapy (ECT) is a highly effective and fast-acting treatment for depression used in the clinic. Its mechanism of therapeutic action remains uncertain. Previous studies have focused on documenting neuroplasticity in the early phase following electroconvulsive seizures (ECS), an animal model of ECT. Here, we investigate whether changes in synaptic plasticity and nonneuronal plasticity (vascular and mitochondria) are sustained 3 months after repeated ECS trials.

Conclusion

A single ECS caused rapid effects of synaptic plasticity and nonneuronal plasticity, while repeated ECS induced long-lasting changes in the efficacy of synaptic plasticity and nonneuronal plasticity at least up to 3 months after ECS.

Methods

ECS or sham treatment was given daily for 1 day or 10 days to a genetic animal model of depression: the Flinders Sensitive and Resistant Line rats. Stereological principles were employed to quantify numbers of synapses and mitochondria as well as length of microvessels in the hippocampus 24 hours after a single ECS. Three months after 10 ECS treatments (1 per day for 10 days) and sham-treatment, brain-derived neurotrophic factor and vascular endothelial growth factor protein levels were quantified with immunohistochemistry.

Results

A single ECS treatment significantly increased the volume of hippocampal CA1-stratum radiatum, the total length of microvessels, mitochondria number, and synapse number. Observed changes were sustained as shown in the multiple ECS treatment group analyzed 3 months after the last of 10 ECS treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。