A strongly pairing fifth base: oligonucleotides with a C-nucleoside replacing thymidine

强配对第五碱基:C 核苷取代胸苷的寡核苷酸

阅读:6
作者:Tanja J Walter, Clemens Richert

Abstract

There are five canonical bases in DNA and RNA. Each base has its particular molecular recognition properties and base pairing strength. Thymine and uracil form only two hydrogen bonds when pairing with adenine, and duplexes rich in A:T base pairs are more labile than duplexes rich in C and G, making some sequences difficult to detect via hybridization in a genomic context. Here we report the synthesis of an ethynylmethylpyridone C-nucleoside, abbreviated 'W', that presents a similar recognition surface as thymidine in the major groove but pairs with A about as strongly as C pairs with G. A phosphoramidite building block was synthesized that allows for incorporation of W residues via automated synthesis in high yield. Melting point increases over duplexes containing T:A pairs of up to 17.5°C, or up to 5.8°C per residue were measured for oligonucleotides containing W. Further, the new base shows excellent fidelity, with a single mismatched G opposite W causing a melting point depression of up to 20.5°C. The strongly pairing replacement for thymidine is only slightly larger than its natural counterpart and performs well in different sequence contexts. It can be used to target weakly pairing A-rich sequences in biological studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。